CS 188: Atrtificial Intelligence
Fall 2009

Lecture 3: A* Search
9/3/2009

Pieter Abbeel — UC Berkeley

Many slides from Dan Klein

Announcements

= Assignments:
= Project 0 (Python tutorial): due Thursday 1/28
= Written 1 (Search): due Thursday 1/28
= Project 1 (Search): to be released today, due Thursday 2/4

= You don'’t need to submit answers to P1 discussion questions
= 5 slip days for projects; up to two per deadline
= Try pair programming, not divide-and-conquer
= Study materials
= Slides, Section materials, Assignments
= Book

Office hours, Section

= Drop-in lab times: Wed 1/26 4-5pm in 271 Soda
= Office hours posted on the course website
= Sections starting this week:

= Working though exercises are key for your
understanding

Section handout contains several exercises similar to
written 1

Solutions will be posted Wed 1pm (after last section)
Section 101: Tue 3-4pm

Section 104: Tue 4-5pm

Section 102: Wed 11-noon

Section 103: Wed noon-1pm

Today

lterative deepening

Uniform cost search

A* Search

Heuristic Design

Recap: Search

= Search problem:
= States (configurations of the world)

= Successor function: a function from states to
lists of (state, action, cost) triples; drawn as a graph

= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search Algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)

DFS and BFS

Algorithm Complete |Optimal [Time Space
/ Path N
DFS Shesking Y N o(b™) O(bm)
BFS Y N* o+ O(b*+1)
1 node
b
b nodes
s tiers b2 nodes
m tiers
< \(2) bs nodes
@]
\ b™ nodes

DFS BFS

lterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete |Optimal |Time Space

/ Path m
DFS ¥ eeking Y N o(b™) O(bm)
BFS Y N* o+ O(b+1)
= Y N* o) O(bs)

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue

Cost
contours

Priority Queue Refresher

= A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

pg.push(key, value) |inserts (key, value) into the queue.

pg.pop() returns the key with the lowest value, and
removes it from the queue.

You can decrease a key’s priority by pushing it again

Unlike a regular queue, insertions aren’t constant time,
usually O(log n)

We need priority queues for cost-sensitive search methods

Uniform Cost Search

Algorithm Complete |Optimal |Time Space
/ Path m
DFS |Gheaing | Y N o) O(bm)
BFS Y N O(b*+1) O+
Uucs Y* Y O(b(C*/g)+1) O(b(c*/f)”)
*UCS can fail if
C#/etiers < actions can get

arbitrarily cheap

Uniform Cost Issues

= Remember: explores

increasing cost contours

= The good: UCS is

complete and optimal!

= The bad:

= Explores options in every

“direction”

= No information about goal
location

Goal

Search Heuristics

» Any estimate of how close a state is to a goal
= Designed for a particular search problem
» Examples: Manhattan distance, Euclidean distance

Heuristics

Oradea
7/
/’ A Neamt
i O s
75/” Zerind \\ 181 \\\
4 lasi
Arad - 140 \ q\
T \ 92
T Sibiu 29 Fagaras \
! N BU——_‘ q h\l’aslui
N \ y
Timisoara anmnlcu Vilcea ™\ y
i T 211 PaL:
™ Lugoj \ 97>~ Pitesti \ /
7 ™ /a8
\ 146 4 :|\(]\1\\ 85 ,d—q Hirsova
Mehadia // RNy |
75 /138 \ 86
7/ Bucharest \
Dobreta 120\h/ //90 h
Cralova L
n Giurgiu Eforie

Straight-line distanca

to Bucharcst
Arad
Bucharest
Craivva
Dobreta
Elurie
Fagaras
Giurgiu
Hirsova
Tusi

Lugoj
Mehadia
Neamt
Oraden
Pitesti
Rimmnicu Vileea
Sibiu
Timisouru
Urziceni
Vauslui
Lcrind

366
0
160
242
161
178
77
151
226
244
241
274
380
98
193
253
320
50
199
374

Best First / Greedy Search

» Expand the node that seems closest...
Sibiu

> @ G @

366 380 1493

253 o]

= What can go wrong?

= A common case:

= Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS in the worst
case
= Can explore everything

= Can get stuck in loops if no
cycle checking

= Like DFS in completeness
(finite states w/ cycle
checking)

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Best-first orders by goal proximity, or forward cost h(n)

5
h=1
1
1 3 2
h=6 1| =5 h=2 h=0
1

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

/ \
\/

= No: only stop when we dequeue a goal

Is A* Optimal?

What went wrong?
Actual bad goal cost < estimated good goal cost
We need estimates to be less than actual costs!

Admissible Heuristics

A heuristic i is admissible (optimistic) if:
h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

10

Optimality of A*: Blocking

Notation:

g(n) = cost to node n
h(n) = estimated cost from n
to the nearest goal (heuristic)

f(n) = g(n) + h(n) =
estimated total cost via n

G*: a lowest cost goal node

G: another goal node

Optimality of A*: Blocking

Proof:

What could go wrong?

We’d have to have to pop a
suboptimal goal G off the
fringe before G*

This can’t happen:
* Imagine a suboptimal £(n) = g(n) + h(n)

goal G is on the queue g
= Some node n which is a g(n) + h(n) < g(G7)

subpath of G* must also 9(G*) < g(G)
be on the fringe (why?) 9(G) = f(@)
= nwill be popped before G f(n) < f(G)

11

Properties of A*

Uniform-Cost A*

A A

UCS vs A* Contours

= Uniform-cost expanded

in all directions
Goal

= A* expands mainly
toward the goal, but

does hedge its bets to
ensure optimality @Goal

[demo: countours UCS / A*]

12

Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

= |nadmissible heuristics are often useful too (why?)

Trivial Heuristics, Dominance

= Dominance: h, 2 h; if

exact
Vn : ha(n) > he(n) I
mazx(ha, hy)
= Heuristics form a semi-lattice: T~
= Max of admissible heuristics is admissible ha hb
h(n) = max(ha(n), hp(n)) I
he
= Trivial heuristics N
Zero

= Bottom of lattice is the zero heuristic (what
does this give us?)
= Top of lattice is the exact heuristic

13

Other A* Applications

= Pathing / routing problems
Resource planning problems
Robot motion planning
Language analysis

Machine translation

Speech recognition

Tree Search: Extra Work!

= Failure to detect repeated states can cause
exponentially more work. Why?

>

!

¢ ¢

O

N

\
*

WANWANWAN

o

N\

\
*

14

Graph Search

= In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

a h r
N
p q f ¢ G
| /\ |
q Ic G a
a

Graph Search

ldea: never expand a state twice

How to implement:

= Tree search + list of expanded states (closed list)
= Expand the search tree node-by-node, but...
= Before expanding a node, check to make sure its state is new

Python trick: store the closed list as a set, not a list

Can graph search wreck completeness? Why/why not?

How about optimality?

15

Optimality of A* Graph Search

Proof:

= New possible problem: nodes on path to
G* that would have been in queue aren't,
because some worse n’for the same
state as some nwas dequeued and
expanded first (disaster!)

= Take the highest such nin tree

= Let p be the ancestor which was on the
queue when n" was expanded

= Assume f(p) < f(n)

= f(n) < f(n’) because n’is suboptimal

= pwould have been expanded before 7’

= So nwould have been expanded before
n', too

= Contradiction!

Consistency

= Wait, how do we know parents have better f-values than
their successors?

= Couldn’t we pop some node n, and find its child n’to
have lower f value?

= YES: /‘ h= 0h 8
g= ,,—»
/"_)l

h=10
= What can we require to prevent these inversions?

= Consistency: c¢(n,a,n’) > h(n) — h(n')

= Real cost must always exceed reduction in heuristic

16

Optimality

= Tree search:

= A* optimal if heuristic is admissible (and non-
negative)
= UCS is a special case (h = 0)

= Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

= Consistency implies admissibility

» |n general, natural admissible heuristics tend to
be consistent

Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* is optimal with admissible heuristics

= Heuristic design is key: often use relaxed
problems

17

18

