
1

CS 188: Artificial Intelligence

Fall 2009

Lecture 3: A* Search

9/3/2009

Pieter Abbeel – UC Berkeley

Many slides from Dan Klein

Announcements

� Assignments:

� Project 0 (Python tutorial): due Thursday 1/28

� Written 1 (Search): due Thursday 1/28

� Project 1 (Search): to be released today, due Thursday 2/4

� You don’t need to submit answers to P1 discussion questions

� 5 slip days for projects; up to two per deadline

� Try pair programming, not divide-and-conquer

� Study materials

� Slides, Section materials, Assignments

� Book

2

Office hours, Section

� Drop-in lab times: Wed 1/26 4-5pm in 271 Soda

� Office hours posted on the course website

� Sections starting this week:

� Working though exercises are key for your

understanding

� Section handout contains several exercises similar to

written 1

� Solutions will be posted Wed 1pm (after last section)

� Section 101: Tue 3-4pm

� Section 104: Tue 4-5pm

� Section 102: Wed 11-noon

� Section 103: Wed noon-1pm

Today

� Iterative deepening

� Uniform cost search

� A* Search

� Heuristic Design

3

Recap: Search

� Search problem:
� States (configurations of the world)

� Successor function: a function from states to
lists of (state, action, cost) triples; drawn as a graph

� Start state and goal test

� Search tree:
� Nodes: represent plans for reaching states

� Plans have costs (sum of action costs)

� Search Algorithm:
� Systematically builds a search tree

� Chooses an ordering of the fringe (unexplored nodes)

DFS

DFS and BFS

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

Y N O(bm) O(bm)

b
1 node

b nodes

b2 nodes

bm nodes

…
s tiers

Y N* O(bs+1) O(bs+1)

bs nodes

…

BFS

m tiers

4

Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of

length 1 or less.

2. If “1” failed, do a DFS which only searches paths

of length 2 or less.

3. If “2” failed, do a DFS which only searches paths

of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

ID

Y N O(bm) O(bm)

Y N* O(bs+1) O(bs+1)

Y N* O(bs) O(bs)

…
b

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

5

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expand cheapest node first:

Fringe is a priority queue
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq.pop() returns the key with the lowest value, and
removes it from the queue.

� You can decrease a key’s priority by pushing it again

� Unlike a regular queue, insertions aren’t constant time,
usually O(log n)

� We need priority queues for cost-sensitive search methods

� A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

6

Uniform Cost Search

Algorithm Complete Optimal Time Space

DFS w/ Path

Checking

BFS

UCS

Y N O(bm) O(bm)

…
b

C*/ε tiers

Y N O(bs+1) O(bs+1)

Y* Y O(b(C*/ε)+1) O(b(C*/ε)+1)

* UCS can fail if

actions can get

arbitrarily cheap

Uniform Cost Issues

� Remember: explores
increasing cost contours

� The good: UCS is
complete and optimal!

� The bad:
� Explores options in every

“direction”

� No information about goal
location Start Goal

…

c ≤ 3

c ≤ 2

c ≤ 1

7

Search Heuristics

� Any estimate of how close a state is to a goal

� Designed for a particular search problem

� Examples: Manhattan distance, Euclidean distance

10

5

11.2

Heuristics

8

Best First / Greedy Search

� Expand the node that seems closest…

� What can go wrong?

Best First / Greedy Search

� A common case:
� Best-first takes you straight

to the (wrong) goal

� Worst-case: like a badly-
guided DFS in the worst
case
� Can explore everything

� Can get stuck in loops if no
cycle checking

� Like DFS in completeness
(finite states w/ cycle
checking)

…
b

…
b

9

Combining UCS and Greedy

� Uniform-cost orders by path cost, or backward cost g(n)

� Best-first orders by goal proximity, or forward cost h(n)

� A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

5

1

1

2

h=6
h=0

c

h=7

3

e h=1

1

Example: Teg Grenager

� Should we stop when we enqueue a goal?

� No: only stop when we dequeue a goal

When should A* terminate?

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0

h = 3

10

Is A* Optimal?

A

GS

1

3
h = 6

h = 0

5

h = 7

� What went wrong?

� Actual bad goal cost < estimated good goal cost

� We need estimates to be less than actual costs!

Admissible Heuristics

� A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

� Example:

� Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

15

11

Optimality of A*: Blocking

…Notation:

� g(n) = cost to node n

� h(n) = estimated cost from n

to the nearest goal (heuristic)

� f(n) = g(n) + h(n) =

estimated total cost via n

� G*: a lowest cost goal node

� G: another goal node

Optimality of A*: Blocking

Proof:

� What could go wrong?

� We’d have to have to pop a

suboptimal goal G off the

fringe before G*

� This can’t happen:

� Imagine a suboptimal

goal G is on the queue

� Some node n which is a

subpath of G* must also

be on the fringe (why?)

� n will be popped before G

…

12

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

� Uniform-cost expanded

in all directions

� A* expands mainly

toward the goal, but

does hedge its bets to

ensure optimality

Start Goal

Start Goal

[demo: countours UCS / A*]

13

Creating Admissible Heuristics

� Most of the work in solving hard search problems

optimally is in coming up with admissible heuristics

� Often, admissible heuristics are solutions to relaxed

problems, where new actions are available

� Inadmissible heuristics are often useful too (why?)

15

Trivial Heuristics, Dominance

� Dominance: ha ≥ hc if

� Heuristics form a semi-lattice:

� Max of admissible heuristics is admissible

� Trivial heuristics

� Bottom of lattice is the zero heuristic (what

does this give us?)

� Top of lattice is the exact heuristic

14

Other A* Applications

� Pathing / routing problems

� Resource planning problems

� Robot motion planning

� Language analysis

� Machine translation

� Speech recognition

� …

Tree Search: Extra Work!

� Failure to detect repeated states can cause
exponentially more work. Why?

15

Graph Search

� In BFS, for example, we shouldn’t bother

expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

� Idea: never expand a state twice

� How to implement:

� Tree search + list of expanded states (closed list)

� Expand the search tree node-by-node, but…

� Before expanding a node, check to make sure its state is new

� Python trick: store the closed list as a set, not a list

� Can graph search wreck completeness? Why/why not?

� How about optimality?

16

Optimality of A* Graph Search

Proof:

� New possible problem: nodes on path to

G* that would have been in queue aren’t,

because some worse n’ for the same

state as some n was dequeued and

expanded first (disaster!)

� Take the highest such n in tree

� Let p be the ancestor which was on the

queue when n’ was expanded

� Assume f(p) < f(n)

� f(n) < f(n’) because n’ is suboptimal

� p would have been expanded before n’

� So n would have been expanded before

n’, too

� Contradiction!

Consistency

� Wait, how do we know parents have better f-values than
their successors?

� Couldn’t we pop some node n, and find its child n’ to
have lower f value?

� YES:

� What can we require to prevent these inversions?

� Consistency:

� Real cost must always exceed reduction in heuristic

A

B

G

3
h = 0

h = 10

g = 10

h = 8

17

Optimality

� Tree search:
� A* optimal if heuristic is admissible (and non-

negative)

� UCS is a special case (h = 0)

� Graph search:
� A* optimal if heuristic is consistent

� UCS optimal (h = 0 is consistent)

� Consistency implies admissibility

� In general, natural admissible heuristics tend to
be consistent

Summary: A*

� A* uses both backward costs and

(estimates of) forward costs

� A* is optimal with admissible heuristics

� Heuristic design is key: often use relaxed

problems

18

